Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase.

نویسندگان

  • Grazyna B Seiffert
  • G Matthias Ullmann
  • Albrecht Messerschmidt
  • Bernhard Schink
  • Peter M H Kroneck
  • Oliver Einsle
چکیده

The tungsten-iron-sulfur enzyme acetylene hydratase stands out from its class because it catalyzes a nonredox reaction, the hydration of acetylene to acetaldehyde. Sequence comparisons group the protein into the dimethyl sulfoxide reductase family, and it contains a bis-molybdopterin guanine dinucleotide-ligated tungsten atom and a cubane-type [4Fe:4S] cluster. The crystal structure of acetylene hydratase at 1.26 A now shows that the tungsten center binds a water molecule that is activated by an adjacent aspartate residue, enabling it to attack acetylene bound in a distinct, hydrophobic pocket. This mechanism requires a strong shift of pK(a) of the aspartate, caused by a nearby low-potential [4Fe:4S] cluster. To access this previously unrecognized W-Asp active site, the protein evolved a new substrate channel distant from where it is found in other molybdenum and tungsten enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase.

The soluble tungsten, iron-sulfur enzyme acetylene hydratase (AH) from mesophilic Pelobacter acetylenicus is a member of the dimethyl sulfoxide (DMSO) reductase family. It stands out from its class as it catalyzes a nonredox reaction, the addition of H₂O to acetylene (H-C≡C-H) to form acetaldehyde (CH₃CHO). Caught in its active W(IV) state, the high-resolution three-dimensional structure of AH ...

متن کامل

Living on acetylene. A primordial energy source.

The tungsten iron-sulfur enzyme acetylene hydratase catalyzes the conversion of acetylene to acetaldehyde by addition of one water molecule to the C-C triple bond. For a member of the dimethylsulfoxide (DMSO) reductase family this is a rather unique reaction, since it does not involve a net electron transfer. The acetylene hydratase from the strictly anaerobic bacterium Pelobacter acetylenicus ...

متن کامل

EPR and Mössbauer studies of benzoyl-CoA reductase.

Benzoyl-CoA reductase catalyzes the two-electron transfer from a reduced ferredoxin to the aromatic ring of benzoyl-CoA; this reaction is coupled to stoichiometrical ATP hydrolysis. A very low reduction potential (less than -1 V) is required for the first electron transfer to the aromatic ring. In this work the nature of the redox centers of purified benzoyl-CoA reductase from Thauera aromatica...

متن کامل

Structure of activated aconitase: formation of the [4Fe-4S] cluster in the crystal.

The structure of activated pig heart aconitase [citrate(isocitrate) hydro-lyase, EC 4.2.1.3] containing a [4Fe-4S] cluster has been refined at 2.5-A resolution to a crystallographic residual of 18.2%. Comparison of this structure to the recently determined 2.1-A resolution structure of the inactive enzyme containing a [3Fe-4S] cluster, by difference Fourier analysis, shows that upon activation ...

متن کامل

Mechanism of tungsten-dependent acetylene hydratase from quantum chemical calculations.

Acetylene hydratase is a tungsten-dependent enzyme that catalyzes the nonredox hydration of acetylene to acetaldehyde. Density functional theory calculations are used to elucidate the reaction mechanism of this enzyme with a large model of the active site devised on the basis of the native X-ray crystal structure. Based on the calculations, we propose a new mechanism in which the acetylene subs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 9  شماره 

صفحات  -

تاریخ انتشار 2007